
Kimi又火了,深度体验它的第一个Agent 后,我发现99%的AI产品忽略了这件「小事」
Kimi又火了,深度体验它的第一个Agent 后,我发现99%的AI产品忽略了这件「小事」Kimi 又火了,在 DeepSeek 的热闹中沉寂大半年后,Kimi K2 悄悄在 LMArena 竞技场中从 DeepSeek 手中,夺过了全球开源第一的宝座。
Kimi 又火了,在 DeepSeek 的热闹中沉寂大半年后,Kimi K2 悄悄在 LMArena 竞技场中从 DeepSeek 手中,夺过了全球开源第一的宝座。
近日,由普林斯顿大学牵头,联合清华大学、北京大学、上海交通大学、斯坦福大学,以及英伟达、亚马逊、Meta FAIR 等多家顶尖机构的研究者共同推出了新一代开源数学定理证明模型——Goedel-Prover-V2。
最近大家有没有发现,好多店家开始用 DeepSeek 来营销了?
为什么 DeepSeek-V3 据说在大规模服务时快速且便宜,但本地运行时却太慢且昂贵?为什么有些 AI 模型响应很慢,但一旦开始运行就变得很快?
没等来 DeepSeek 官方的 R2,却迎来了一个速度更快、性能不弱于 R1 的「野生」变体!这两天,一个名为「DeepSeek R1T2」的模型火了!这个模型的速度比 R1-0528 快 200%,比 R1 快 20%。除了速度上的显著优势,它在 GPQA Diamond(专家级推理能力问答基准)和 AIME 24(数学推理基准)上的表现均优于 R1,但未达到 R1-0528 的水平。
今年 4 月,围绕“华为芯片效率是否超越国际主流 AI 芯片和架构”的问题,网上曾引发一场激烈争论。
测试时扩展(Test-Time Scaling)极大提升了大语言模型的性能,涌现出了如 OpenAI o 系列模型和 DeepSeek R1 等众多爆款。那么,什么是视觉领域的 test-time scaling?又该如何定义?
几天前,没有预热,没有发布会,DeepSeek 低调上传了 DeepSeek R1(0528)的更新。
DeepSeek 猝不及防地更新了,不是 R2,而是 R1 v2。
近半年来,OpenAI 形象开始变得灰暗: 团队骨干相继离职引发猜疑、组织转型遭受口诛笔伐、GPT-4.5/Sora 等模型表现不及预期,还有被 DeepSeek R1 打破的叙事神话……